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Abstract
The spinel MnV2O4 is a two-sublattice ferrimagnet, with site A occupied by the Mn2+ ion and
site B by the V3+ ion. The magnon of the system, the transversal fluctuation of the total
magnetization, is a complicated mixture of the sublattice A and B transversal magnetic
fluctuations. As a result, the magnons’ fluctuations suppress in a different way the manganese
and vanadium sublattice magnetization and one obtains two phases. At low temperature (0, T ∗)
the sublattice Mn magnetization and sublattice V magnetization contribute to the magnetization
of the system, while at a high temperature (T ∗, TN), the vanadium sublattice magnetization is
suppressed by magnon fluctuations, and only the manganese ions have non-zero spontaneous
magnetization. A modified spin-wave theory is developed to describe the two phases and to
calculate the magnetization as a function of temperature. The anomalous M(T ) curve
reproduces the experimentally obtained zero-field-cooled (ZFC) magnetization.

This paper is inspired from experimental measurements of the
zero-field-cooled (ZFC) magnetization of MnV2O4 [1–3]. The
profile of the experimental curve reproduces the anomalous
magnetization curve predicted by Néel [6, 7] for ferrimagnets
with equal sublattice spins. This stimulates us to model
the manganese vanadate spinel in the spirit of Néel’s theory.
By comparing and contrasting ZFC and field-cooled (FC)
magnetization one gains an insight into the magnetism of the
manganese vanadate oxide.

The spinel MnV2O4 is a two-sublattice ferrimagnet, with
site A occupied by the Mn2+ ion, which is in the 3d5 high-
spin configuration with quenched orbital angular momentum,
which can be regarded as a simple s = 5/2 spin. The B
site is occupied by the V3+ ion, which takes the 3d2 high-
spin configuration in the triply degenerate t2g orbital and has
orbital degrees of freedom. The measurements show that the
setting in of the magnetic order is at the Néel temperature
TN = 56.5 K [1], and that the magnetization has a maximum
near T ∗ = 53.5 K. Below this temperature the magnetization
sharply decreases and goes to zero when the temperature
approaches zero. A second transition is observed at T ∗
from collinear ferrimagnetism to triangular, accompanied by a
cubic-to-tetragonal distortion [1–5]. There is a thermodynamic
signature that this is a first-order transition [5].

We consider a system which obtains its magnetic
properties from Mn and V magnetic moments. It is shown
that the true magnons in this system, which are the transversal
fluctuations corresponding to the total magnetization, are
complicated mixtures of the Mn and V transversal fluctuations.
The magnons interact with manganese and vanadium ions in a

different way, and the magnon fluctuations suppress the Mn
and V sublattice magnetization at different temperatures. As a
result, the ferrimagnetic phase is divided into two phases: in
the low temperature phase 0 < T < T ∗ the sublattice Mn
magnetization and sublattice V magnetization contribute to the
magnetization of the system, while in the high temperature
phase (T ∗, TN), the vanadium sublattice magnetization is
suppressed by magnon fluctuations, and only the manganese
ions have non-zero spontaneous magnetization. A modified
spin-wave theory is developed to describe the two phases and
to calculate the magnetization as a function of temperature.
The anomalous M(T ) curve reproduces the experimentally
obtained ZFC magnetization [2, 3].

Because of the strong spin–orbital interaction it is
convenient to consider j j coupling with JA = SA and JB =
LB + SB. The sublattice A total angular momentum is jA =
sA = 5/2, while the sublattice B total angular momentum is
jB = lB + sB, with lB = 3 and sB = 1 [1]. Then the g
factor for the sublattice A is gA = 2 and the atomic value of gB

is gB = 5
4 . The sublattice A magnetic order is antiparallel

to the sublattice B one, and the saturated magnetization is
σ = 2 5

2 − 5
4 4 = 0 in agreement with the experimental finding

that the magnetization goes to zero when the temperature
approaches zero.

The Hamiltonian of the system is

H = −κA

∑

〈〈i j〉〉A

JA
i · JA

j − κB

∑

〈〈i j〉〉B

JB
i · JB

j

+ κ
∑

〈i j〉
JA

i · JB
j , (1)
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where the sums are over all sites of a three-dimensional cubic
lattice: 〈i, j〉 denotes the sum over the nearest neighbors,
while 〈〈i, j〉〉A(B) denotes the sum over the sites of the A(B)
sublattice. The first two terms describe the ferromagnetic
Heisenberg intra-sublattice exchange κA > 0, κB > 0, while
the third term describes the inter-sublattice exchange which is
antiferromagnetic κ > 0.

To proceed we use the Holstein–Primakoff representation
of the total angular momentum vectors JA

j (a
+
j , a j) and

JB
j (b

+
j , b j), where a+

j , a j and b+
j , b j are Bose fields. In

terms of these fields and keeping only the quadratic and quartic
terms, the effective Hamiltonian equation (1) adopts the form,
H = H2 + H4, where

H2 = jAκA

∑

〈〈i j〉〉A

(
a+

i ai + a+
j a j − a+

j ai − a+
i a j

)

+ jBκB

∑

〈〈i j〉〉B

(
b+

i bi + b+
j b j − b+

j bi − b+
i b j

)

+ κ
∑

〈i j〉

[
jAb+

j b j + jBa+
i ai − √

jA jB
(

a+
i b+

j + ai b j

)]

(2)

H4 = 1
4κA

∑

〈〈i j〉〉A

[
a+

i a+
j (ai − a j )

2 + (a+
i − a+

j )2ai a j

]

+ 1
4κB

∑

〈〈i j〉〉B

[
b+

i b+
j (bi − b j)

2 + (b+
i − b+

j )2bi b j

]

+ 1

4
κ

∑

〈i j〉

[√
jA
jB

(
ai b

+
j b j b j + a+

i b+
j b+

j b j

)

+
√

jB
jA

(
a+

i ai ai b j + a+
i a+

i ai b
+
j

)
− 4a+

i ai b
+
j b j

]
(3)

and the terms without operators are dropped.
The next step is to represent the Hamiltonian in the

Hartree–Fock approximation H ≈ HHF = Hcl + Hq ,
where

Hcl = 12NκA j 2
A(uA − 1)2 + 12NκB j 2

B(uB − 1)2

+ 6Nκ jA jB(u − 1)2 (4)

and N = NA = NB is the number of sites on a sublattice.
The Hamiltonian Hq can be obtained from the Hamiltonian
equation (2) replacing κA with κAuA, κB with κBuB and κ with
κu, where uA, uB and u are Hartree–Fock parameters, to be
determined self-consistently. It is convenient to rewrite the
Hamiltonian in momentum space representation:

Hq =
∑

k∈Br

[
εa

k a+
k ak + εb

k b+
k bk − γk

(
a+

k b+
k + bkak

)]
, (5)

where the wavevector k runs over the reduced first Brillouin
zone Br of a cubic lattice. The dispersions are given by the
equalities

εa
k = 4 jAκAuAεk + 6 jBκu

εb
k = 4 jBκBuBεk + 6 jAκu

γk = 2κu
√

jA jB
(
cos kx + cos ky + cos kz

)
(6)

with εk = 6 − cos(kx + ky) − cos(kx − ky) − cos(kx + kz) −
cos(kx − kz) − cos(ky + kz) − cos(ky − kz).

To diagonalize the Hamiltonian one introduces new Bose
fields αk, α

+
k , βk, β

+
k by means of the transformation

ak = ukαk + vkβ
+
k , bk = ukβk + vkα

+
k (7)

with coefficients uk and vk real functions of the wavevector k:

uk =
√√√√√

1

2

⎛

⎝ εa
k + εb

k√
(εa

k + εb
k )

2 − 4γ 2
k

+ 1

⎞

⎠, (8)

vk = sign(γk)

√
u2

k − 1. The transformed Hamiltonian adopts
the form

Hq =
∑

k∈Br

(
Eα

k α+
k αk + Eβ

k β+
k βk + E0

k

)
, (9)

with new dispersions Eα
k = E+

k , Eβ

k = E−
k , where

E±
k = 1

2

[√
(εa

k + εb
k )

2 − 4γ 2
k ± (εa

k − εb
k )

]
(10)

and vacuum energy

E0
k = 1

2

[√
(εa

k + εb
k )

2 − 4γ 2
k − εb

k − εa
k

]
. (11)

To obtain the system of equations for the Hartree–Fock
parameters we consider the free energy of a system with
Hamiltonian HHF equations (4) and (9):

F = 12κA j 2
A(uA − 1)2 + 12κB j 2

B(uB − 1)2

+ 6κ jA jB(u − 1)2 + 1

N

∑

k∈Br

E0
k

+ 1

β N

∑

k∈Br

[
ln

(
1 − e−βEα

k
) + ln

(
1 − e−βEβ

k

)]
. (12)

Then the three equations ∂F/∂uA = 0, ∂F/∂uB = 0 and
∂F/∂u = 0 adopt the form

uA = 1 − 1

6 jA

1

N

∑

k∈Br

εk

[
u2

knα
k + v2

k nβ

k + v2
k

]

uB = 1 − 1

6 jB

1

N

∑

k∈Br

εk

[
v2

k nα
k + u2

knβ

k + v2
k

]

u = 1 − 1

N

∑

k∈Br

⎡

⎣ 1

2 jA

(
u2

knα
k + v2

k nβ

k + v2
k

)

+ 1

2 jB

(
v2

k nα
k + u2

knβ

k + v2
k

)

− 2

3
κu

(
1 + nα

k + nβ

k

) (
cos kx + cos ky + cos kz

)2

√
(εa

k + εb
k )

2 − 4γ 2
k

⎤

⎦ ,

(13)

where nα
k and nβ

k are the Bose functions of α and β excitations.
Hartree–Fock parameters, the solution of the system of
equations (13), are positive functions of T/κ , uA(T/κ) > 0,
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uB(T/κ) > 0 and u(T/κ) > 0. Utilizing these functions, one
can calculate the spontaneous magnetization MA = 〈J A

3 〉 and
MB = 〈J B

3 〉 of Mn and V ions, where J A
3 and J B

3 are the third
components of the JA and JB vectors, respectively. In terms of
the Bose functions of the α and β excitations they adopt the
form

MA = jA − 1

N

∑

k∈Br

[
u2

knα
k + v2

k nβ

k + v2
k

]

MB = − jB + 1

N

∑

k∈Br

[
v2

k nα
k + u2

knβ

k + v2
k

]
.

(14)

The magnon excitations in the effective theory are a
complicated mixture of the sublattices’ A and B transversal
fluctuations. As a result, the magnon fluctuations suppress in a
different way the sublattice Mn magnetization and sublattice V
magnetization. Quantitatively, this depends on the coefficients
uk and vk in equation (14). At characteristic temperature T ∗ V
spontaneous magnetization becomes equal to zero, while Mn
spontaneous magnetization is still non-zero. Above T ∗ the
system of equations (13) has no solution and one has to modify
the spin-wave theory.

Once suppressed, the sublattice V magnetization cannot
be restored increasing the temperature above T ∗. To formulate
this mathematically we modify the spin-wave theory using
the idea of the description of the paramagnetic phase of 2D
ferromagnets (T > 0) by means of modified spin-wave
theory [8, 9]. We consider a two-sublattice system and to
enforce the magnetization on the two sublattices to be equal
to zero in paramagnetic phase we introduce two parameters λA

and λB [10]. The new Hamiltonian is obtained from the old
one (equation (1)) adding two new terms:

Ĥ = H −
∑

i∈A

λA J A
3i +

∑

i∈B

λB J B
3i . (15)

In momentum space, the Hamiltonian adopts the form
equation (5) with new dispersions ε̂a

k = εa
k +λA and ε̂b

k = εb
k +

λB, where the old dispersions are given by equalities (6). We
utilize the same transformation equation (7) with coefficients
ûk and v̂k which depend on the new dispersions in the same
way as the old ones depend on the old dispersions equation (8).
In terms of the αk and βk bosons, the Hamiltonian Ĥq adopts
the form equation (9) with dispersions Êα

k and Êβ

k , which can
be written in the form equation (10), replacing εa

k and εb
k with

ε̂a
k and ε̂b

k .
We have to do some assumptions for parameters λA and

λB to ensure the correct definition of the two-boson theory.
For that purpose, it is convenient to represent the parameters
in the form λA = 6κu jB(μA − 1) λB = 6κu jA(μB − 1).
In terms of the parameters μA and μB, the dispersions are
ε̂a

k = 4 jAκAuAεk + 6κu jBμA, ε̂b
k = 4 jBκBuBεk + 6κu jAμB.

The conventional spin-wave theory is reproduced when μA =
μB = 1 (λA = λB = 0). We assume μA and μB to be positive
(μA > 0, μB > 0). Then, ε̂a

k > 0, ε̂b
k > 0, for all values of

the wavevector k if the Hartree–Fock parameters are positive
too. The Bose theory is well defined if Eα

k � 0, Eβ

k � 0.
This comes true if μAμB � 1. In the case μAμB > 1, both

αk and βk bosons are gapped excitations. In the particular case
μAμB = 1, long-range excitations (magnons) emerge in the
system.

We introduced the parameters λA and λB (μA, μB) to
enforce the sublattice A and B spontaneous magnetizations
to be equal to zero in the paramagnetic phase. We find
out the parameters μA and μB, as well as the Hartree–Fock
parameters, as functions of temperature, solving the system of
five equations, equations (13) and the equations MA = MB =
0, where the ordered moments have the same representation
as equation (14) but with coefficients ûk, v̂k , and dispersions
Êα

k , Êβ

k in the expressions for the Bose functions. The
numerical calculations show that, for high enough temperature,
μAμB > 1. When the temperature decreases the product
μAμB decreases, remaining larger than 1. The temperature
at which the product becomes equal to 1 (μAμB = 1) is the
Néel temperature. Below TN, the spectrum contains long-range
(magnon) excitations, thereupon μAμB = 1. It is convenient
to represent the parameters in the following way:

μA = μ, μB = 1/μ. (16)

In the ordered phase magnon excitations are the origin of
the suppression of the magnetization. Near zero temperature
their contribution is small and at zero temperature Mn and
V spontaneous magnetization reach saturation. Increasing
the temperature magnon fluctuations suppress the sublattice
Mn magnetization and sublattice V magnetization in different
ways. At T ∗ the V spontaneous magnetization becomes
equal to zero. Increasing the temperature above T ∗, the
vanadium sublattice magnetization should be zero. This is
why we impose the condition MB(T ) = 0 if T > T ∗. For
temperatures above T ∗, the parameter μ and the Hartree–
Fock parameters are solutions of a system of four equations,
equations (13) and the equation MB = 0. We utilize the
obtained function μ(T ), uA(T ), uB(T ), u(T ) to calculate the
spontaneous magnetization MA of the Mn ions as a function
of the temperature. Above T ∗, MA(T ) is equal to the
magnetization of the system. It is important to stress that the
system of equations for λA, λB and Hartree–Fock parameters
is equivalent to the system of equations which one obtains
treating the paramagnetic phase of a system with Hamiltonian
equation (1) by means of the Schwinger-boson mean field
theory. The advantage of the modified spin-wave theory is
the possibility of extending the calculations for temperatures
below the Néel temperature. Introducing two λ parameters
one captures the important physical feature of the system,
namely the magnons are long-range excitations below the
critical temperature, and they open a gap above TN.

We consider a two-sublattice ferrimagnet with Mn ions on
sublattice A and V ions on sublattice B. The sublattice A total
angular moment is jA = sA = 5/2 and g factor gA = 2. The
sublattice B total angular momentum is jB = lB + sB = 4
and g factor gB = 5/4. The magnetization of the system
gAMA + gBMB as a function of the temperature is depicted
in figure 1 for parameters κA/κ = 0.65 and κB/κ = 0.0001.

The figure is in very good agreement with the
experimental ZFC magnetization curves [2, 3] (see figure 1
[11]). The parameters κA/κ and κB/κ are chosen so
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Figure 1. The magnetization gA MA + gB MB as a function of T/κ
for parameters κA/κ = 0.65 and κB/κ = 0.0001. Inset: the
sublattice A (Mn) and B (V) spontaneous magnetization as a function
of T/κ . T ∗ is the temperature at which the spontaneous
magnetization of the vanadium ions become equal to zero.

(This figure is in colour only in the electronic version)

that the theoretically predicted ratio TN/T ∗ is close to the
experimental one. The anomalous temperature dependence
of the magnetization is reproduced, but there is an important
difference between the interpretation of the experimental
results in [1–5] and the present theoretical results. In
the experimental papers TN is the temperature at which
both the Mn and V magnetization become equal to zero.
The modified spin-wave theory predicts two phases: at
low temperatures (0, T ∗) sublattice Mn magnetization and
sublattice V magnetization contribute to the magnetization
of the system, while at high temperatures (T ∗, TN) only Mn
ions have non-zero spontaneous magnetization. The vanadium
sublattice magnetization sets in at T ∗ and evidence for this is
the abrupt decrease of magnetization below T ∗, which also
indicates that the magnetic order of vanadium electrons is
antiparallel to the order of Mn electrons.

Two ferromagnetic phases were theoretically predicted,
very recently, in spin-fermion systems, which obtain their
magnetic properties from a system of localized magnetic
moments being coupled to conducting electrons [10]. At the
characteristic temperature T ∗, the magnetization of itinerant
electrons becomes zero, and a high temperature ferromagnetic
phase (T ∗ < T < TC) is a phase where only localized electrons
have contributions to the magnetization of the system. An
anomalous increasing of magnetization below T ∗ is obtained,
in good agreement with experimental measurements of the
ferromagnetic phase of UGe2 [11].

The results of the present paper and the previous one [10]
suggest that the T ∗ transition from a magnetic phase to another
magnetic phase is a generic feature of the two magnetic
orders systems. The additional phase transition demonstrates
itself through the anomalous temperature variation of the
spontaneous magnetization, but it is important to discuss
alternative experimental detections of the T ∗ transition. This

is why we consider the FC magnetization curves [2, 3]. For
samples cooled in a field (FC magnetization) the field leads
to formation of a single domain and, in addition, increases
the chaotic order of the spontaneous magnetization of the
vanadium sublattice, which is antiparallel to it. As a result
the average value of the vanadium magnetic order decreases
and does not compensate for the Mn magnetic order. The
magnetization curves depend on the applied field and do not
go to zero. For a larger field the (FC) curve increases when
the temperature decreases below the Néel temperature. It has
a maximum at the same temperature T ∗ < TN as the ZFC
magnetization and a minimum at T ∗

1 < T ∗. Below T ∗
1 the

magnetization increases monotonically when the temperature
approaches zero.

The experiments with samples cooled in a field (FC
magnetization) provide a new opportunity to clarify the
magnetism of the manganese vanadium oxide spinel. The
applied field is antiparallel with vanadium magnetic moment
and strongly affect it. On the other hand, the experiments show
that there is no difference between ZFC and FC magnetization
curves when the temperature is over the interval (T ∗, TN) [2, 3].
They begin to diverge when the temperature is below T ∗.
This is in accordance with the theoretical prediction that
the vanadium magnetic moment does not contribute to the
magnetization when T > T ∗, and T ∗ is the temperature
at which the vanadium ions start to form magnetic order.
Because of the strong field, the two vanadium bands are
split and the magnetic moment of one of the t2g electrons
is reoriented to be parallel with the field and magnetic
order of Mn electrons. The description of this case is
more complicated and requires three magnetic orders to be
involved. When T ∗ < T < TN only Mn ions have non-
zero spontaneous magnetization. At T ∗ vanadium magnetic
order antiparallel with the magnetic order of Mn sets in and
partially compensates it. Below T ∗

1 the reoriented electron
gives a contribution, which explains the increasing of the
magnetization of the system when the temperature approaches
zero. A series of experiments with different applied fields
could be decisive for the confirmation or rejection of the
T ∗ transition. Increasing the applied field one expects an
increase of T ∗

1 and, when the field is strong enough, so that
all vanadium electrons are reoriented, an anomalous increasing
of magnetization below T ∗ would be obtained as within the
ferromagnetic phase of UGe2 [11].

To conclude, we note that, to account more accurately for
the canted magnetic order of the vanadium ions, one has to
consider a model (1) with sublattice B exchange constant κB

depending on space directions: κ z
B positive (ferromagnetic) and

κ x
B and κ

y
B negative (antiferromagnetic). With appropriately

chosen parameters the new model will reproduce the geometry
of the vanadium magnetic moment and the main result of the
present paper, namely the existence of partial ordering.
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